Speaker
Description
We study the stochastic gravitational wave background sourced by a network of cosmic superstrings and demonstrate that incorporating higher-mass string species, beyond the fundamental string, is crucial for accurately modeling the resulting gravitational wave spectrum across frequencies ranging from nanohertz to kilohertz.
Using the multi-tension velocity-dependent one-scale model to evolve the cosmic superstring network, we perform several fits to the NANOGrav 15-year dataset and obtain expectation values for the fundamental string tension, string coupling and effective size of compact extra dimensions. We find that the cosmic superstring best-fits are comparable in likelihood to Supermassive Black Hole models, thought by many to be the leading candidate explanation of the signal. The implications of the best-fit spectra are discussed within the context of future gravitational wave experiments.