Quantum Technology Initiative Journal Club

Europe/Zurich
513/R-070 - Openlab Space (CERN)

513/R-070 - Openlab Space

CERN

15
Show room on map
Michele Grossi (CERN)
Description

Weekly Journal Club meetings organised in the framework of the CERN Quantum Technology Initiative (QTI) to present and discuss scientific papers in the field of quantum science and technology. The goal is to help researchers keep track of current findings and walk away with ideas for their own research. Some previous knowledge of quantum physics would be helpful, but is not required to follow the talks.

To propose a paper for discussion, contact: michele.grossi@cern.ch

Zoom Meeting ID
63779300431
Host
Michele Grossi
Alternative host
Matteo Robbiati
Passcode
55361000
Useful links
Join via phone
Zoom URL
    • 16:00 17:00
      CERN QTI Journal CLUB
      Convener: Dr Michele Grossi (CERN)
      • 16:00
        Gabriel Do Carmo Rouxinol (EPFL) 40m

        TITLE: Quantum information with top quarks in QCD

        Abstract:
        Top quarks represent unique high-energy systems since their spin correlations can be measured, thus allowing to study fundamental aspects of quantum mechanics with qubits at high-energy colliders. We present here the general framework of the quantum state of a top-antitop (t¯t) quark pair produced through quantum chromodynamics (QCD) in a high-energy collider. We argue that, in general, the total quantum state that can be probed in a collider is given in terms of the production spin density matrix, which necessarily gives rise to a mixed state. We compute the quantum state of a t¯t pair produced from the most elementary QCD processes, finding the presence of entanglement and CHSH violation in different regions of phase space. We show that any realistic hadronic production of a t¯t pair is a statistical mixture of these elementary QCD processes. We focus on the experimentally relevant cases of proton-proton and proton-antiproton collisions, performed at the LHC and the Tevatron, analyzing the dependence of the quantum state with the energy of the collisions. We provide experimental observables for entanglement and CHSH-violation signatures. At the LHC, these signatures are given by the measurement of a single observable, which in the case of entanglement represents the violation of a Cauchy-Schwarz inequality. We extend the validity of the quantum tomography protocol for the t¯t pair proposed in the literature to more general quantum states, and for any production mechanism. Finally, we argue that a CHSH violation measured in a collider is only a weak form of violation of Bell's theorem, necessarily containing a number of loopholes.

        Link to the paper: https://quantum-journal.org/papers/q-2022-09-29-820/

        Speaker: Gabriel Rouxinol (EPFL)