3–5 Dec 2025
CERN
Europe/Zurich timezone

A study of seniority-2 configurations in N=126 isotonic chain. Coulomb excitation of 214Ra.

3 Dec 2025, 18:46
1m
61/1-201 - Pas perdus - Not a meeting room - (CERN)

61/1-201 - Pas perdus - Not a meeting room -

CERN

10
Show room on map
Poster (In person) Poster Session

Speaker

Ivan Todorov Anastasov (University of Sofia - St. Kliment Ohridski (BG))

Description

The nuclear shell model, combined with pairing correlations, offers a straightforward explanation of the low-energy spectra of semi-magic nuclei. In a single high-$j$ orbital with more than two particles, low-lying $J>0$ states arise from recoupling of unpaired nucleons and group into multiplets labeled by seniority $\nu$—the number of unpaired particles. The generalized seniority scheme is essentially a truncated shell-model description~\cite{Talmi1971}. To study how well the seniority picture holds near the $N=126$ shell closure, we carried out a safe Coulomb-excitation experiment on $^{214}\mathrm{Ra}$. A post-accelerated $^{214}\mathrm{Ra}$ beam was directed onto a $^{120}\mathrm{Sn}$ target at HIE-ISOLDE, and the resulting $\gamma$ rays were measured with the Miniball detector~\cite{Warr2013}. Our main goal is to extract $B(E2; 2_1^+ \!\rightarrow\! 0_1^+)$ transition strength and compare it with expectations from the nuclear shell model and with trends seen in neighboring $N=126$ isotones. With data taking completed and analysis in progress, we present the current status along with preliminary $B(E2)$ values. Once finished, these results will test whether the low-lying states of $^{214}\mathrm{Ra}$ are dominated by a simple $\pi(1h_{9/2})^{2}$ configuration, and they will provide useful constraints for model parameters used in this region.

References

[1]I.Talmi, Nucl. Phys. A 172, 1 (1971).
[2]N.Warr et al.,Eur. Phys. J. A 49, 40 (2013).

Authors

Hannes Mayr (Technische Universitaet Darmstadt (DE)) Ivan Todorov Anastasov (University of Sofia - St. Kliment Ohridski (BG))

Co-authors

Andrew Stuchbery (Australian National University (AU)) Andrey Atanasov Blazhev (Universitaet zu Koeln (DE)) Asli Kusoglu (Istanbul University (TR)) Carl David Unsworth (STFC Daresbury Laboratory (GB)) Carlotta Porzio (CERN) Clemens Nickel (TU Darmstadt) D. Hristova (Faculty of Physics, St. Kliment Ohridski University of Sofia, 1164 Sofia, Bulgaria) Diana Kocheva (University of Sofia - St. Kliment Ohridski (BG)) Dimiter Balabanski (Horia Hulubei National Institute of Physics and Nuclear Engineering (RO)) E. Uusikylä (University of Jyväskylä, Department of Physics, 40014, Finland) Frank Browne (The University of Manchester (GB)) Georgi Georgiev (Université Paris-Saclay (FR)) Georgi Ivanov Rainovski (University of Sofia - St. Kliment Ohridski (BG)) H. Hess (Institute for Nuclear Physics, Universität zu Köln, 50937 Köln, Germany) Hannah Kleis (Universitaet zu Koeln (DE)) Joshua Wilson (University of York (GB)) Kalin Gladnishki (University of Sofia - St. Kliment Ohridski (BG)) Katharina Ide (Technische Universitaet Darmstadt (DE)) L. Kodinov (Faculty of Physics, St. Kliment Ohridski University of Sofia, 1164 Sofia, Bulgaria) Liam Gaffney (University of Liverpool (GB)) Marcus Scheck (University of the West of Scotland) Maximilian Paul Droste (Universitaet zu Koeln (DE)) Nigel Victor Warr (Universitaet zu Koeln (DE)) Norbert Pietralla Panu Jussi Rahkila (University of Jyvaskyla (FI)) Peter Reiter (Universitaet zu Koeln (DE)) Radostina Toncheva Zidarova (Technische Universitaet Darmstadt (DE)) S. Thiel (Institute for Nuclear Physics, Universität zu Köln, 50937 Köln, Germany) Steffen Meyer (Technische Universitaet Darmstadt (DE)) Thorsten Kroell (Technische Universitaet Darmstadt (DE)) Tim Florian Stetz (Technische Universitaet Darmstadt (DE)) Volker Werner (TU Darmstadt) Zixuan Yue (University of York (GB)) Zsolt Podolyak (University of Surrey (GB))

Presentation materials

There are no materials yet.