Speaker
Leonardo Milano
(CERN)
Description
The observation of long-range correlations on the near- and away-side (also known as the double-ridge) in high-multiplicity p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV and its similarity to Pb-Pb collisions remains one of the open questions from the p-Pb run at the Large Hadron Collider. It has been attributed to mechanisms that involve initial-state effects, such as gluon saturation and colour connections forming along the longitudinal direction, and final-state effects, such as parton-induced interactions and collective effects developing in a high-density system possibly formed in these collisions. In order to understand the nature of this double-ridge structure the two-particle correlation analysis has been extended to identified particles. The observed mass dependence in p-Pb resembles qualitative expectations from hydrodynamics, and is also observed in Pb-Pb collisions. A study of correlations at forward rapidity probes the low-x regime of the nucleus, where saturation effects are expected to become stronger. The possibility of accessing this regime using the ALICE forward muon detector is explored. In addition, a possible ridge signal within the ALICE acceptance in pp collisions $\sqrt{s} = 7$ TeV is also investigated.
On behalf of collaboration: | ALICE |
---|
Primary author
Leonardo Milano
(CERN)