Imaging Performance of a Photon-Counting Computed Tomography Prototype

E. Roessla, M. Bartelsa, B. Brendela, H. Daerra, K.-J. Engelb, C. Herrmannb, R. Levinsonc, A. Livnec, M. Roknic, D. Rubinc, R. Steadmanb, A. Thrana, Y. Younesc, R. Proksaa, A. Altmanc, O. Zarchind, I. Blevisc

a Philips Research Laboratories - Hamburg, Germany
b Philips Research Laboratories - Eindhoven, The Netherlands
c Philips Global Research - Advanced Development CT - Haifa, Israel
d Philips Healthcare - BG Imaging Systems - Cleveland, USA

3rd Workshop on Medical Applications for Spectroscopic X-ray Detectors
CERN, April 2015

Abstract

We report on the imaging performance of a research prototype for energy-resolving, photon-counting computed tomography. The prototype is based on a Philips iCT gantry with a direct-converting, semi-conductor detection system, operated in single-photon-counting mode. Each detector pixel offers energy-discrimination into a multitude of energy-bins with separate counters enabling photon-counting HU-imaging, two-material discrimination, mono-chromatic imaging as well as K-edge imaging in a very wide range of atomic numbers. We illustrate the imaging performance in terms of spatial resolution, HU-image quality and material discrimination capabilities.