Conveners
Session 14
- Stephanie Majewski (University of Oregon (US))
The direct measurement of cosmic rays spectrum up to the knee region is a crucial point for the improvement of our knowledge on the mechanisms responsible for production, acceleration and propagation of cosmic rays. At present, calorimeters are the best suited detectors to reach this instrumental challenge because they offer good performances in terms of geometrical acceptance and energy...
The high-luminosity LHC will provide 5-7 times higher luminosites than the orignal design. An
improved readout system of the ATLAS Liquid Argon Calorimeter is needed to readout the 182,500 calorimeter cells at 40 MHz with 16 bit dynamic range in these conditions. Low-noise, low-power, radiation-tolerant and high-bandwidth electronics components are being developed in 65 and 130 nm CMOS...
The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid Experiment (CMS) has been operating at the Large Hadron Collider (LHC) with proton-proton collisions at 13 TeV center-of-mass energy and a bunch spacing of 25 ns since 2015. Challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC). We review the design and R&D studies for the...
The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMTs). The analogue signals from the PMTs are amplified, shaped, digitized by sampling the...
The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system for the Tile hadronic calorimeter (TileCal) of the ATLAS experiment is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super...