Conveners
M1-1 Ultrafast EM waves I: Materials Science (DAMOPC/DCMMP) | Ondes EM ultrarapides I: Sciences des matériaux (DPAMPC/DPMCM)
- Kimberly Hall (U. Dalhousie)
- François Légaré (INRS)
We create and control intense transient waveforms by compressing in space and time optical pulses down to a single half-cycle, nearly 1 femtosecond (1 fs = $10^{-15}$ s) in duration. By measuring the optical waveform using an in-situ attosecond (1 as = $10^{-18}$ s) technique we confirm the pulse reshaping. We use the intense transient as a source for generating isolated attosecond pulses...
Attosecond Physics explores ways to follow and control matter with unprecedented temporal resolution (1 attosecond= 10-18 s.). Strong laser fields used to apply forces on the sub-cycle timescale, together with the availability of tabletop attosecond soft x-ray pulses, now open avenues for time-resolving ultrafast dynamics on the unexplored attosecond timescale [1, 2]. In this first attosecond...
The initialization and control of the quantum states of excitons in semiconductor quantum dots (QDs) may be achieved using coherent optical pulses, making these systems of interest for solid state approaches to quantum simulators [1] and single photon sources [2]. Quantum state control via adiabatic rapid passage (ARP), which is insensitive to variations in the QD parameters (dipole moment,...