CERN Lattice Coffee

Quantum chaos, thermalization and entanglement generation in matrix quantum mechanics

by Pavel Buividovich

Europe/Zurich
4/2-037 - TH meeting room (CERN)

4/2-037 - TH meeting room

CERN

18
Show room on map
Description

We study numerically the onset of chaos and thermalization in the Banks-Fischler-Shenker-Susskind (BFSS) matrix model, which is holographically dual to a higher-dimensional black hole. We approximate the real-time dynamics in terms of the most general Gaussian density matrices with parameters which obey self-consistent equations of motion, extending the applicability of real-time simulations beyond the classical limit. Thus attempting to bridge between the low-energy regime with a calculable holographic description and the classical regime at high energies, we find that quantum corrections to classical dynamics tend to decrease the Lyapunov exponents, which is essential for consistency with the Maldacena-Shenker-Stanford (MSS) "bound on chaos" at low temperatures. The entanglement entropy is found to exhibit an expected ``scrambling'' behavior - rapid initial growth followed by saturation. Decay of quasinormal modes is found to be characterized by the shortest time scale of all. We also find that while the bosonic matrix model becomes non-chaotic in the low-temperature confining regime, the full supersymmetric BFSS model remains chaotic and dissipative down to the lowest temperatures, in full accord with the expected dual black hole picture.