Conveners
Session VI
- Marek Gazdzicki (Johann-Wolfgang-Goethe Univ. (DE))
The hard thermal (dense) loop (HTL) approach for the quark-gluon plasma
and the hadron resonance gas (nuclear statistical equilibrium) model for low-
density hadronic matter are well-studied limits of the equation of state for
strongly interacting matter. However, when investigating the transition
between both phases of QCD in heavy-ion collisions or in Astrophysics, the
question arises how...
Geometry and dynamics of the particle-emitting source in heavy-ion collisions at high energies can be inferred via femtoscopy method. Two-particle correlations at small relative momentum exploit Quantum Statistics and the Final State Interactions which allow one to study the space-time characteristics of the source of the order of 10−15 m and 10−23 s, respectively. The RHIC Beam Energy Scan...
We discuss the recently measured event-by-event multiplicity fluctuations in relativistic heavy-ion collisions. It is shown that the observed non-monotonic behaviour of the scaled variance of multiplicity distribution as a function of collision centrality (such effect is not observed in a widely used string-hadronic models of nuclear collisions) can be fully explained by the correlations...
It is known that the quark-gluon plasma is well described in terms of the perfect fluid dynamics. However, for a more realistic investigation, the dissipative processes quantified by the transport parameters need to be included in the hydrodynamic evolution of the QGP. We study the quark-flavor dependence of the shear viscosity calculated in the relaxation time approximation of the Boltzmann...