Conveners
Poster Session 2 (X-ray and Gamma Ray Detectors; Applications in Nuclear Physics and Nuclear Industry; Detectors for FELS, Synchrotrons and Other Advanced Light Sources; Detectors for Neutron Facilities; Novel Ionising Radiation Detection Systems)
- Martin Freer (University of Birmingham)
- Tony Price (University of Birmingham (GB))
Description
X-ray and Gamma Ray Detectors
Applications in Nuclear Physics and Nuclear Industry
Detectors for FELS, Synchrotrons and Other Advanced Light Sources
Detectors for Neutron Facilities
Novel Ionising Radiation Detection Systems
Neutron detectors perform key tasks in the development of many research fields, as nuclear, particle and astroparticle physics as well as neutron dosimetry, radiotherapy, and radiation protection. Until now, no neutron detector exhibits tracking capability (i.e., full neutron-momentum reconstruction) even if several projects are in progress [1-7]. To address this deficiency, we aim at...
The development of new fast neutron reactors and nuclear fusion reactors requires new neutron detectors in extreme environments. Due to its wide bandgap (3.4 eV) and radiation resistance capability, gallium nitride (GaN) is a candidate for neutron detection in extreme environments. In this study, a GaN-based pin thin-film thermal neutron detector with lithium fluoride (LiF) converter layer is...
The European XFEL is one of the newest X-ray facilities in the world with a very demanding requirements for the detectors operating at the experimental stations and recording high quality scientific data. Those requirements include high dynamic range from single up to 104 12.5 keV-photons. The accelerator operates with a very specific time structure producing bunch trains of 2700...
Tristan10M is a 10 million pixel area detector based on the Timepix3 chip, a member of the Medipix family of ASICs for X-ray and particle imaging and detection developed by the Medipix collaboration led by CERN. The Timepix3 ASIC can work in event driven mode in addition to the standard frame based mode. Event driven mode enables the chip to send out a data packet containing the pixel...
Neutron sources are currently becoming a standard to investigate the structures of various materials at mesoscopic scale using elastic scattering techniques, which are applied across a wide spectrum of scientific disciplines such as physics, biology, materials science. Moreover, having the capability of detecting neutrons is a common request of Radioprotection and Security fields, especially...
In this paper, a new concept of detector is proposed for dynamic synchrotron radiation applications. It is based on the conventional hybrid pixel detector architecture, while the readout chip is designed with hit-driven readout scheme rather than frame refreshing. Based on ToT (Time over Threshold) structure, each pixel can acquire 4D information, including 2D position, timing, and energy of...
HEPS-BPIX4 is a hybrid pixel detector readout chip for X-ray applications for the High Energy Photon Source (HEPS) in China. The prototype readout chip contains an array of 20 × 32 pixels with a pixel size of 55 μm × 55 μm, working in single photon counting mode. Each pixel handles with both positive and negative input charge signals and has a counting depth of 11 bits. The chip could work at...
LaBr3:Ce crystals have been introduced for radiation imaging in medical physics, with photomultiplier or single SiPM readout.
An R&D was pursued with 1/2" and 1" LaBr3:Ce, from different producers, to realize
compact large area detectors (up to some cm2 area) with SiPM array readout, aiming at high light yields, good energy resolution, good detector linearity and fast time response for...
India’s Chandrayaan-2 Large Area Soft X-ray Spectrometer (CLASS), launched in 2019 aboard the Chandrayaan-2 spacecraft, has now spent an extended period of time in lunar orbit. CLASS is currently mapping the elemental composition of the lunar surface using X-ray spectrometry.
Building on the heritage of earlier instruments, CLASS employs 16 CCD236 Swept Charge Devices (SCDs) similar in...
Gamma-ray polarization is of prime interest in many areas of physics. One particular is biomedical imaging with positron emission tomography (PET). Two orthogonally polarized, entangled gamma-rays are emitted in an event of para-positronium annihilation thus they are strongly correlated. When they undergo Compton scattering, the initial correlation dominantly results in their orthogonal...
We will present designs and simulations of a novel X-ray imaging detector. The intent of the FleX-RAY project is to create a digital X-ray detector that is capable of producing high-resolution images, is flexible enough to produce an image on a curved surface, and is capable of self-reporting its final shape.
The X-rays will be detected on a sheet of scintillating optical fibers, which...
A Low Energy Recoil Tracker (ALERT) experiment will occur in Hall B at Jefferson Laboratory, Virginia, USA. It will study the partonic structure of bound nucleons in He-4. The ALERT detector must track and identify low energy nucleons and light nuclei of momenta ranging from 70 MeV/c to 250 MeV/c at a rate up to 60 MHz. It will be used in tandem with the already installed CLAS12 spectrometer...
The Hybrid Gamma Camera (HGC) [Lees et al, Sensors, 17(3):554, 2017] has applications in intraoperative imaging guidance and nuclear decommissioning. The HGC gamma detector comprises an Electron Multiplying Charge-Coupled Device (EMCCD) coupled to a columnar CsI: Tl scintillator. Each absorbed gamma photon will produce a scintillation light splash on the EMCCD; the number, location, and size...
To realize the non-proliferation and security of nuclear material, the international atomic energy agency (IAEA) considers a tomographic image acquisition technique of spent fuel assemblies as a promising technique to accurately verify rod-by-rod spent fuel conditions stored in a water pool. Our previous research developed and experimentally validated a highly sensitive single-photon emission...
To meet the requirements of next-generation light sources, STFC has begun work on a new generation of detector technology, capable of operating at MHz frame rates. Although readout electronics are key components of these systems, the choice of sensor material is critical, with high-density semiconductors such as CdZnTe (CZT) required for higher-energy operation. Whilst high-Z materials are...
Noise and spatial resolution are two key intrinsic characteristics to describe the performance of an x-ray detector and quantified by the imaging performance metrics of noise power spectrum, modulation transfer function, and detective quantum efficiency (DQE). To improve two characteristics of an x-ray detector, image processing algorithms are widely used. However, there exists a trade-off...
Molecular Breast Imaging (MBI) is a diagnostic technique which uses the radioisotope Technetium-99m to identify lesions within the breast. Cadmium Zinc Telluride (CZT) is a desirable detector material for use in MBI primarily due to its good position resolution. This property makes the detector highly sensitive to 141 keV gamma rays and therefore allows for an isotope of lower activity to be...
We report on the potential use of organic electronic devices applied to radiation detection applications. In recent decades organic electronics has entered the mainstream of consumer electronics. Driven by innovations in scalability and low power applications, and low-cost fabrication methods. The potential for using organic semiconductor electronic devices as radiation detectors, and in...
The prototype SIGMA detector is the first p-type segmented inverted-coaxial germanium detector to be manufactured for γ-ray tracking and imaging purposes [1,2]. The γ-ray tracking and imaging capability of SIGMA requires a high precision of measuring the interaction positions of γ-ray radiation with the detector which is strongly dependent upon the achieved position resolution. The γ-ray...