Speaker
Description
Big Bang Nucleosynthesis (BBN) accounts for the cosmic origin of the lightest elements, and deuterium (D/H) plays a key role in probing the physics of the early universe. The simplicity of BBN theory allows for few-percent-level precision of D/H prediction, which is not normally possible in nuclear astrophysics. Under such precision, the comparison between predicted and observed primordial D/H not only provides a crucial test of the standard cosmology but also hints at new physics. The push to further improve this precision brings its own challenges and rewards: sharpening the power of BBN constraints on new physics.
The nuclear uncertainties of deuterium destruction reactions now block our way to a better D/H prediction. The reactions