Conveners
Air Radio Experiments 1
- Tim Huege
The LOFAR radio telescope measures the radio emission from extensive air showers generated by cosmic rays in the energy range of $10^{16}$ to $10^{18}$ eV. Measurements of the emission in the 30-80 MHz range allows for the reconstruction of the cosmic ray energy, arrival direction, and most importantly the shower maximum, Xmax, with an average precision below 20 g/cm$^2$. The detector consists...
To find and understand the sources of ultra-high-energy cosmic rays necessitates measuring the properties of these particles with high precision. The objective of the upgrade of the Pierre Auger Observatory is to increase, in particular, the mass sensitivity of the observatory, aiming at an event-by-event identification of the particle type with unprecedented precision. Part of this upgrade is...
Identifying and measuring radio signals of ultra-high-energy particles is a common challenge in all kind of astroparticle radio detectors, be it air-shower detection, the search for neutrino signals in the ice, or radio observatories looking for particle-induced radio pulses from the moon. Although the challenge is common, the community uses a large variety of definitions of the...