Topic of the Week

US/Central
Sunrise - WH11NE (Fermilab)

Sunrise - WH11NE

Fermilab

Si Xie (California Institute of Technology (US)), Zoltan Gecse (Fermi National Accelerator Lab. (US))
    • 1
      Learning New Physics from a Machine

      I will discuss how to use neural networks to detect data departures from a given reference model, with no prior bias on the nature of the new physics responsible for the discrepancy. The algorithm that I will describe returns a global p-value that quantifies the tension between the data and the reference model. It also allows to compare directly what the network has learned with the data, giving a fully transparent account of the nature of possible signals. The potential applications are broad, from LHC physics searches to cosmology and beyond.

      Speaker: Raffaele Tito Dagnolo (Univ. of California San Diego (US))