Speaker
Description
Collective phenomena in heavy-ion collisions are very sensitive to initial geometry including nuclei deformation effects. Recent hydrodynamic model calculations suggest that such deformation effects can be probed by studying event-by-event mean $p_T$ ($\left \langle p_T \right \rangle$) fluctuation and the correlation between mean $p_T$ and harmonic flow. In particular, due to prolate shape of the Uranium nuclei, significant difference between Au+Au and U+U collisions is expected for these observables. This poster presents new measurements as a function of centrality from Au+Au at $\sqrt{s_{NN}}$ = 200 GeV and U+U at $\sqrt{s_{NN}}$ = 193 GeV collisions with the STAR detector. Results on the high-order cumulants of $\left \langle p_T \right \rangle$ fluctuations and Pearson correlation coefficient between $\left \langle p_T \right \rangle$ and harmonic flow $v_n$ from these two systems will be presented. The results will be compared with model calculations to constrain initial geometry as well as medium properties and final state effects in these collisions.