Speaker
David Damgaard
(LMU Munich)
Description
In the past decade our understanding of scattering amplitudes in maximally supersymmetric Yang Mills theory has increased dramatically. This enhanced understanding has led to a formulation of color-ordered scattering amplitudes as logarithmic differential forms on particular geometries, called positive geometries. In particular, the momentum amplituhedron is the geometry governing the tree-level amplitudes in spinor helicity space, and it allows for considering different orderings. In this talk, I will review the construction of the momentum amplituhedron as well as discuss
some surprising recent results regarding how the Kleiss-Kuijf
relations arise geometrically in this framework.
Author
David Damgaard
(LMU Munich)