Speaker
Description
The recently updated value of the ratio of branching fractions $R_K = \mathcal{B}(B^+ \to K^+\mu^+\mu^-)~/~\mathcal{B}(B^+ \to K^+e^+e^-)$ that has been calculated for a dilepton invariant mass squared range $q\mathrm{^2 \in (1.1~GeV^2,~6.0~GeV^2)}$ is in tension with the Standard Model prediction at the level of 3.1 $\sigma$. I will discuss a complementary study in the high $q\mathrm{^2 > 14~GeV^2}$ region using the same $\mathrm{9~fm^{-1}}$ of proton-proton collision data recorded by the LHCb experiment at CERN's Large Hadron Collider. The result is expected to be statistically and systematically independent of the existing central $q\mathrm{^2}$ measurement and will be a vital measurement in clarifying the presence of new physics in this system.