Speaker
Dr
Kamila Kowalska
(National Centre for Nuclear Research)
Description
I will discuss how the framework of asymptotic safety above the Planck scale can be employed to derive specific predictions for scalar leptoquark solution to the b to s flavor anomalies. The presence of an interactive UV fixed point in the system of gauge and Yukawa couplings imposes a set of boundary conditions at the Planck scale, which allows one to determine low-energy values of the leptoquark Yukawa matrix elements. As a consequence, the allowed leptoquark mass range can be significantly narrowed down. To be in agreement with the b to s anomalies, the leptoquark mass should lie between 4 and 10 TeV, which puts it entirely in reach of a hadron-hadron collider with 100 TeV c.o.m. energy.
Authors
Enrico Maria Sessolo
(NCBJ, Warsaw)
Dr
Kamila Kowalska
(National Centre for Nuclear Research)
Yasuhiro Yamamoto