Speaker
Description
Due to its topological properties, skyrmions offer appealing interest in both fundamental and in spintronic applications. Here, we show combining a femtosecond laser and real space imaging technique in a cryo-Lorentz Transmission Electron Microscope that we can rotate the skyrmion lattice by a discrete amount in a coherent and fully deterministic manner. Using circular polarized pulses in a double-pump experiment and micromagnetic simulation, we demonstrate that we drive via inverse faraday effect a collective magnetic mode, named breathing mode. This excitation provides the required torque to rotate the lattice at a speed nine orders of magnitude faster than previously reported. This new mechanism opens the path towards novel ultra-efficient devices.