Speaker
Description
Engineering strong interactions between quantum systems is essential for many phenomena of quantum physics and technology. Typically, strong coupling relies on short-range forces or on placing the systems in high-quality electromagnetic resonators, which restricts its range to microscopic distances. We used a free-space laser beam to strongly couple an atomic ensemble and a micromechanical membrane over 1 meter distance in a room-temperature environment. The coupling is highly tunable and allows the observation of normal-mode splitting, coherent energy exchange oscillations, two-mode thermal noise squeezing, and dissipative coupling. Our approach to engineering coherent long-distance interactions with light enables modular interfaces for quantum networks and control.