Additive manufacturing approaches were recently exploited for the fabrication of exquisite photonic objects, but the angle-dependence observed limits a broader application of structural color in synthetic systems. Here, we propose a manufacturing platform for the 3D printing of complex-shaped objects that display isotropic structural color generated from photonic colloidal glasses. We print...
Strongly correlated heterogeneous dielectrics can exhibit structural coloring. Such materials are widely used by nature. Thus, it is desirable to derive a bioinspired design platform for bright ultra-stable synthetic pigments. This can be achieved by using spherical aggregates of nanoparticles, known as photonic balls (PB).
In our research, we experimentally study the light scattering of PBs...
In the context of Industry 4.0, the inkjet printing technology has the unrivaled advantage of being digital and extremely versatile by its nature. This technology offers a new universe of highly customizable products, adding multi material and while at the same time being fast, flexibly scalable and cost-effective.
The recent breakthrough in the understanding of structurally colored...
Photonic nanostructures can vary in their degree of order and their optical appearance is often altered by pigmentary content. Longhorn beetles display vivid colours in the UV-VIS spectral range and rely on varying degrees of (dis)order combined with pigments to create complex colour patterns. The green-orange coloured subspecies Sternotomis amabilis ssp. sylvia was studied by combining...
The interplay between disorder and order in structured materials has been increasingly recognized as an important parameter for the creation of a wide range of optical effects from iridescent bright colors created by ordered (crystalline) structures, angle-independent matt colors found in disordered (correlated) structures to extreme white appearances stemming from anisotropic (random) network...
Inspired by nature, structural colours can be mimicked by self-assembling monodisperse colloids into crystals. The amount of order in the crystalline structure impacts the iridescence (ordered) and non-iridescence (slightly disordered) of the colours.
This project is looking at introducing disorder into the system through non-spherical dimpled particle templates. The dimples introduce an...
In this talk we will discuss photonic materials from various points of view, taking nature as source of inspiration. We will go into the relation between the physical structure of a material and its resulting optical properties and we will look at ways to influence the structure of a material using the light itself thereby creating a two way interaction: the structure determining the optical...
The scales of the Cyphochilus beetle exhibit one of the whitest whites observed for organic materials up to date. The intense and broadband reflectance is striking as the scales are composed of a very thin (7-8$\mu$m) disordered network made of low refractive index chitin rods (n$\sim$1.55). We will first present the speckle frequency correlation setup used to characterize these samples. We...
Nanostructured dielectric materials with a photonic bandgap (PBG) are considered “semiconductors for light” and promise rich fundamental physics and multiple technological applications, such as low-loss waveguides, perfect reflectors, or optical elements for computers. In PBG materials, the propagation of electromagnetic waves is forbidden within a specific frequency range. Recently,...
The beetle Euprotaetia.nox possesses a black, velvet like allure. Through optical microscopy and spectroscopy, it is found that the cuticle of this insect demonstrates far greater optical absorption than common insect cuticle. Electron-microscope investigations reveal the presence of chitinous micro-pillar arrays adorning the insect elytron. (See image) To identify the presence of a...
One of the main advantages of DNA nanotechnology is that colloidal nanoparticles and fluorophores can be positioned with nanometric precision. In order to fully manipulate the interaction between these species it is necessary to not only control their relative position but also their relative orientation. In this work, we study the orientation of Cy5 fluorophores incorporated in an innovative...