US ATLAS Machine Learning Training Event 2022

US/Pacific
59/3101 (Building 59) (LBNL)

59/3101 (Building 59)

LBNL

1 Cyclotron Rd, Berkeley, CA 94720
Aishik Ghosh (University of California Irvine (US)), Elham E Khoda (University of Washington (US)), Ben Nachman (Lawrence Berkeley National Lab. (US))
Description

This US ATLAS Machine Learning (ML) training event will be hosted at Lawrence Berkeley National Laboratory (hybrid mode). All talks and tutorials will be given in person, and in person attendance is encouraged for participants, if they are able. The workshop is open to all ATLAS collaborators.

Overview:

We will introduce fundamental concepts of machine learning accompanied by hands-on tutorials of the essential open-source ML packages. The program will cover particle physics specific use cases and deployment of the trained models in Athena/FPGAs, with lots of hands-on examples. There will be invited talks from ATLAS members who have previously deployed ML for different tasks in ATLAS. Few use cases in other experiments and other scientific domains will also be discussed to provide a glimpse into the larger ML4Science world.

Attendees can expect to gain an overview of the broad range of current and potential ML applications in ATLAS, and also learn some of the particle physics specific tricks that an ML practitioner picks up from experience. We will try to address the typical ML questions that often come up in ATLAS meetings.

Tentative topics to be covered:

  • Introduction to Machine Learning
  • Introduction to standard open-source ML packages like Scikit-learn, XGBoost (hands-on)
  • Introduction to Neural Networks with Keras (hands-on)
  • Overview of ML in particle physics
  • Practitioners guide to handling particle physics datasets
  • Uncertainty treatment
  • Unfolding
  • Simulator Based Inference
  • Exploiting symmetries in physics data (hands-on)
  • Graph Neural Networks in particle physics (hands-on)
  • Anomaly detection (hands-on)
  • Deploying NNs in C++: ONNX Runtime (hands-on)
  • Deploying NNs on fast hardware : HLS4ML (hands-on)

Please look at the time table to for the full agenda.

Industry Talk:

For the industry talk,  Dr. Jaideep Pathak will discuss his journey transitioning from academia to research work at NVIDIA for weather predictions with ML.

Computing Resources:

In-person participants will be guaranteed computing resources for the hands-on sessions thanks to NERSC. Virtual participants will be giving access on a first come first serve basis. 

Networking:

This training program also aims to be a platform for young ML enthusiasts to connect with one another and with veteran ML experts in ATLAS.

Tutorial git:

Github link: https://github.com/USATLAS-ML-Training

Zoom links:

https://cern.zoom.us/j/67597522045?pwd=Ty83d1VRWFF2OGVJVm9PaXA5bEtWQT09

Discussions:
Join the slack workspace to discuss and ask questions about the tutorials, particularly for remote participants.

slack joining link: https://join.slack.com/t/atlasmltraining/shared_invite/zt-1daz1y3z4-wihELkZx2MdNb9CfyjzoPA 

Participants
  • Aaron Kilgallon
  • Abraham Kahn
  • Ahmed Tarek
  • Aishik Ghosh
  • Alex Zeng Wang
  • Ali Can Canbay
  • Alkaid Cheng
  • Alysea Kim
  • Amartya Rej
  • Amy Tee
  • Andrew Donald Gentry
  • Angela Maria Burger
  • Angira Rastogi
  • Anni Xiong
  • Arpan Ghosal
  • Aryan Patel
  • Asmaa Aboulhorma
  • Ben Carlson
  • Binbin Dong
  • Boping Chen
  • Brendon Bullard
  • Bruna Pascual Dias
  • Carlos Josue Buxo Vazquez
  • Chuanshun Wei
  • Daniele Dal Santo
  • Dawson Samuel Thomas
  • Derrick Ray Allen
  • Dewen Zhong
  • Dhanush Anil Hangal
  • Dilia Maria Portillo Quintero
  • Diptaparna Biswas
  • Douglas Todd Zenger Jr
  • Egor Antipov
  • Elena Mazzeo
  • Elham E Khoda
  • Faig Ahmadov
  • Francisco Sili
  • Gabriel Rabanal Bolaños
  • Gregory James Ottino
  • Grigore Tarna
  • Guillermo Nicolas Hamity
  • Hadar Cohen
  • Hamza Hanif
  • Hanane Riani
  • Hao Zhou
  • Hector De La Torre Perez
  • Heng Li
  • Hicham Atmani
  • Hoang Dai Nghia Nguyen
  • Ilkay Turk Cakir
  • Isaac Bamwidhi
  • Jacob Wayne Johnson
  • Jad Mathieu Sardain
  • Jana Schaarschmidt
  • Jason Oliver
  • Jason P. Gombas
  • Jay Ajitbhai Sandesara
  • Jay Chan
  • Jem Aizen Mendiola Guhit
  • Jingjing Pan
  • Joaquin Hoya
  • Jose Gabriel Reyes Rivera
  • Joseph Earl Lambert
  • Joseph Haley
  • Juan Carlos Jr Cardenas
  • Juan Salvador Tafoya Vargas
  • Julia Hinds
  • Kai Zheng
  • Katharina Voss
  • Kehang Bai
  • Kevin Greif
  • Laura Pintucci
  • Liana Simpson
  • Luc Le Pottier
  • Luiz Eduardo Balabram Filho
  • Maria Mazza
  • Martha Cecilia Duran Osuna
  • Mason Ray Housenga
  • Mayuri Prabhakar Kawale
  • Meng-Ju Tsai
  • Merve Nazlim Agaras
  • Mesut Unal
  • Michael James Fenton
  • Mohamed Aly
  • Mohamed Belfkir
  • Mohammed Abdelrazek Aboelela
  • Mohammed Faraj
  • Nathan Daniel Simpson
  • Nicholas Graves Kyriacou
  • Nicola Orlando
  • Nikolai Fomin
  • Nisha Lad
  • Orhan Cakir
  • Paras Pokharel
  • Pengqi Yin
  • Prachi Atmasiddha
  • Prajita Bhattarai
  • Punit Sharma
  • Riccardo Longo
  • Riley Xu
  • Roshan Joshi
  • Rui Zhang
  • Santosh Parajuli
  • Selaiman Ridouani
  • Shaojun Sun
  • Sicong Lu
  • Sinan Kuday
  • Smita Darmora
  • Somadutta Bhatta
  • Soumya Mohapatra
  • Soumyananda Goswami
  • Tanvi Wamorkar
  • Tong Qiu
  • Trisha Farooque
  • Utsav Mukesh Patel
  • Vallary Shashikant Bhopatkar
  • Veena Balakrishnan
  • Vera Maiboroda
  • Vinicius Massami Mikuni
  • Wenkai Zou
  • Yanlin Liu
  • Yassine El Ghazali
  • Yiming Abulaiti
  • Yuan-Tang Chou
  • Yumeng Cao
  • Zackary Lee Alegria
  • Zahra Farazpay
The agenda of this meeting is empty