30 November 2022 to 2 December 2022
CERN
Europe/Zurich timezone

Abrupt change in nuclear moments of indium isotopes at magic number 82 explained by nuclear theory

1 Dec 2022, 16:30
25m
503/1-001 - Council Chamber (CERN)

503/1-001 - Council Chamber

CERN

162
Show room on map

Speaker

Adam Robert Vernon (Massachusetts Inst. of Technology (US))

Description

In this contribution, we present measurements of the nuclear magnetic dipole moments and nuclear electric quadrupole moments of the 113-131In isotope chain, performed using the Collinear Resonance Laser Spectroscopy experiment at ISOLDE, CERN. In addition to future prospects for laser spectroscopy of In isotopes.

We show that the electromagnetic properties of the neutron-rich indium isotopes significantly differ at N = 82 compared to N < 82, despite the single unpaired proton dominating the behaviour of this complex many-body system. This challenges our previous understanding of these isotopes, which were considered a textbook example for the dominance of single-particle properties in nuclei [1, 2].

To investigate the microscopic origin of our experimental results, we performed a combined effort with developments in two complementary nuclear many-body methods: ab-initio valence space in-medium similarity normalization group [3,4] and density functional theory [5].

When compared with our experimental results, contributions from previously poorly constrained time-odd channels [6,7], and many-body currents [8] are found to be important, demonstrating electromagnetic properties of ‘proton-hole’ isotopes around magic shell closures at extreme proton-to-neutron ratios can give us crucial insights.

  1. K. Heyde. The Nuclear Shell Model. Springer Series in Nuclear and Particle Physics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1990.
  2. J. Eberz et al. Nuclear Physics A, 464(1):9–28, 1987
  3. R. Stroberg et al. Annual Review of Nuclear and Particle Science, 69(1), 2019.
  4. P. Gysbers et al. Nature Physics, 15(5):428–431, 2019.
  5. J. Dobaczewski et al. J. Phys. G: Nucl. Part. Phys., 48(10):102001, 2021.
  6. J.Engel and J. Menéndez. Reports on Progress in Physics, 80(4):046301, 2017
  7. J. Dobaczewski et al. Phys. Rev. Lett., 121:232501, 2018.
  8. S. Pastore et al. Phys. Rev. C, 87:035503, 2013.

Author

Adam Robert Vernon (Massachusetts Inst. of Technology (US))

Co-authors

A. Koszorus (KU Leuven) C.L. Binnersley (The University of Manchester) David Leimbach (Gothenburg University (SE)) Deyan Yordanov (Université Paris-Saclay (FR)) G. Neyens (KU Leuven) Georgi Georgiev Gregory James Farooq-Smith (KU Leuven (BE)) J. Billowes (The University of Manchester) Jacek Dobaczewski Jason Holt Dr Jeremy Bonnard (University of York) K. T. Flanagan (The University of Manchester) Kara Marie Lynch (CERN) M. L. Bissell (The University of Manchester) R. F. Garcia Ruiz (Massachusetts Institute of Technology) Dr Ragnar Stroberg (University of Washington) Reinhard Heinke (CERN) Ruben de Groote (KU Leuven) Shane Wilkins (Massachusetts Institute of Technology) T. Miyagi (Institut f¨ ur Kernphysik, Technische Universit¨ at Darmstadt, Darmstadt, Germany) T.E. Cocolios (KU Leuven) Dr Wouter Gins (University of Jyvaskyla (FI)) X. F. Yang (Peking University)

Presentation materials