30 November 2022 to 2 December 2022
CERN
Europe/Zurich timezone

Direct high-precision measurement of the electron capture $Q$-value in $^{163}\mathrm{Ho}$ for the determination of the effective electron neutrino mass

2 Dec 2022, 11:00
25m
503/1-001 - Council Chamber (CERN)

503/1-001 - Council Chamber

CERN

162
Show room on map

Speaker

Christoph Schweiger (Max Planck Society (DE))

Description

Among the most important quantities for fundamental physics is the effective mass of the electron neutrino $m_{\nu}$, which has far-ranging consequences for cosmology and theories beyond the Standard Model. At present, the most precise indirect upper limit on $m_{\nu}$ is <120 meV/$c^2$ resulting from astrophysical observations while the most precise direct limit is set by the KATRIN collaboration with <0.8 meV/${c^2}$, based on the kinematic study of the tritium $\beta$-decay. Complementary, the ECHo and HOLMES collaborations investigate the electron capture decay in $^{163}\mathrm{Ho}$ using microcalorimeters. In order to reach the anticipated sub-eV limits on $m_{\nu}$ with calorimetric measurements, the exclusion of possible systematic uncertainties is crucial and is achieved by a comparison of the calorimetrically determined $Q$-value of the decay to an independently measured one with the same uncertainty level. Within this talk, an independent, direct, ultra-precise measurement of this $Q$-value using the Penning-trap mass spectrometer Pentatrap is presented with a sub-eV uncertainty. Using this technique, the $Q$-value is determined by measuring the ratio of the free cyclotron frequencies of highly charged ions of the mother and daughter nuclides, the synthetic radioisotope $^{163}\mathrm{Ho}$ and $^{163}\mathrm{Dy}$, respectively. The $Q$-value is finally determined from the measured ratio of free cyclotron frequencies by including precise atomic physics calculations of the electronic binding energies of the missing electrons in the measured highly charged ions. This more than 40-fold improved $Q$-value compared to the previous best direct measurement paves the way for a sub-eV upper limit on $m_{\nu}$ within the ECHo and HOLMES collaborations.

Primary author

Christoph Schweiger (Max Planck Society (DE))

Co-authors

Mr Martin Braß (Institute for Theoretical Physics, Universität Heidelberg) Dr Vincent Debierre (Max-Planck-Institut für Kernphysik, Heidelberg) Mr Menno Door (Max-Planck-Institut für Kernphysik, Heidelberg) Dr Holger Dorrer (Institut für Kernchemie, Johannes-Gutenberg-Universität Mainz) Prof. Christoph E. Düllmann (Institut für Kernchemie, Johannes-Gutenberg-Universität Mainz, Helmholtz-Institut Mainz, GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH) Dr Sergey Eliseev (Max-Planck-Institut für Kernphysik, Heidelberg) Prof. Christian Enss (Kirchhof-Institute for Physics, Universität Heidelberg) Dr Pavel Filianin (Max-Planck-Institut für Kernphysik) Prof. Loredana Gastaldo (Kirchhof-Institute for Physics, Universität Heidelberg) Dr Zoltán Harman (Max-Planck-Institut für Kernphysik, Heidelberg) Prof. Maurits W. Haverkort (Institute for Teoretical Physics, Universität Heidelberg) Mr Jost Herkenhoff (Max-Planck-Institut für Kernphysik, Heidelberg) Prof. Paul Indelicato (Laboratoire Kastler Brossel, CNRS, ENS-PSL Research University, Coll`ege de France, Campus Pierre et Marie Curie, Sorbonne Université, Paris) Prof. Christoph H. Keitel (Max-Planck-Institut für Kernphysik) Ms Kathrin Kromer (Max-Planck-Institut für Kernphysik, Heidelberg) Mr Daniel Lange (Max-Planck-Institut für Kernphysik, Heidelberg) Prof. Yuri N. Novikov (NRC “Kurchatov Institute”-Petersburg Nuclear Physics Institute, Gatchina) Dr Dennis Renisch (Helmholtz-Institut Mainz, GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH) Dr Alexander Rischka (Max-Planck-Institut für Kernphysik, Heidelberg) Dr Rima X. Schüssler (Max-Planck-Institut für Kernphysik, Heidelberg) Prof. Klaus Blaum (Max-Planck-Institut für Kernphysik, Heidelberg)

Presentation materials