18–23 Jun 2023
University of New Brunswick
America/Halifax timezone
Welcome to the 2023 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2023!

(G*) From Spin to Structure: Beam Single-Spin Asymmetry and the Strong Force

19 Jun 2023, 15:00
15m
UNB Tilley Hall (Rm. 205 (max. 85))

UNB Tilley Hall

Rm. 205 (max. 85)

Oral Competition (Graduate Student) / Compétition orale (Étudiant(e) du 2e ou 3e cycle) Nuclear Physics / Physique nucléaire (DNP-DPN) (DNP) M2-4 Hadronic physics, nucleon structure, QCD | Physique hadronique, structure des nucléons, QCD (DPN)

Speaker

Alicia Postuma

Description

The KaonLT/PionLT Collaboration probes hadron structure by measuring deep exclusive meson production reactions at Jefferson Lab. A set of high momentum, high resolution spectrometers in Hall C allow for precision measurements from which form factors and other observables can be extracted. One possible measurement is the beam spin asymmetry, which describes the fractional difference in cross-section between events caused by an electron of positive or negative helicity. This asymmetry is caused by interference between longitudinally and transversely polarized virtual photons, which makes it possible to extract a polarized interference cross-section $\sigma_{LT’}/\sigma_0$. In this work, the asymmetry is calculated in the transition regime where the strong force is still poorly understood (Q$^2$ between 2 and 5.5 GeV$^2$), for the p + e → e’+ π + n reaction data from the recent KaonLT experiment. The dependence of $\sigma_{LT’}/\sigma_0$ on the four-momentum transfer to the target -t is then determined, and the results are compared to two different classes of theoretical models. By comparing with predictions made using both Regge trajectories and Generalized Parton Distributions, the asymmetry helps determine how to best describe hadronic reactions in the transition regime, thus providing insight into the strong force.

Keyword-1 QCD
Keyword-2 Hadrons

Primary author

Presentation materials