Help us make Indico better by taking this survey! Aidez-nous à améliorer Indico en répondant à ce sondage !

18–23 Jun 2023
University of New Brunswick
America/Halifax timezone
Welcome to the 2023 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2023!

(G*) Simulation study of the impact of intermediary materials on the T9 beam for the WCTE.

19 Jun 2023, 17:00
15m
UNB Tilley Hall (Rm. 124 (max. 54))

UNB Tilley Hall

Rm. 124 (max. 54)

Oral Competition (Graduate Student) / Compétition orale (Étudiant(e) du 2e ou 3e cycle) Particle Physics / Physique des particules (PPD) (PPD) M3-10 DM / Neutrino 1 | DM / Neutrino 1 (PPD)

Speaker

Deesha Divecha

Description

The Hyper-Kamiokande (HK) is a next generation neutrino detector that will require new detector technologies and percent-level calibration to achieve its full physics potential. To achieve this goal, a 50-ton scale Water Cherenkov Test Experiment (WCTE) has been proposed and is scheduled to be installed at the T9 test beam experimental area in CERN, with the run starting in summer of 2024. To understand and characterize the T9 beam, several small detectors have been designed, including a Time-of-flight (TOF) detector, Aerogel Cherenkov Threshold (ACT) detectors, hole counters, and hodoscopes. These detectors will be placed between the beam-target stage and the WCTE water tank. However, the presence of these intermediary materials will modify the momentum and position distribution of the incoming T9 beam. To study these modifications, a dedicated Geant4 simulation has been performed, and the results will be discussed in this talk. Overall, this simulation aims to improve the accuracy and effectiveness of the WCTE detector by providing a better understanding of the T9 beam and its interactions with intermediary materials.

Keyword-1 Geant4
Keyword-2 Neutrino detector

Primary author

Presentation materials

There are no materials yet.