Speaker
Description
We present a novel study of the impact of asymmetric dark matter (DM) on the dynamics of binary neutron star (BNS) mergers and the associated gravitational wave (GW) signatures. Utilizing numerical relativity simulations with a recently developed framework for DM admixed BNS, we analyze not only the emitted GW signal but also the dynamical behavior of the ejected material (ejecta) during and after the merger for different particle's mass and fraction of DM. This comprehensive approach allows us to explore how the presence of DM affects the post-merger remnant's fate, potentially altering its collapse into a black hole or remaining as a massive neutron star. We focus on deviations in the GW signal and the ejecta properties compared to standard BNS mergers. This study aims to establish a connection between DM properties and the combined GW and ejecta signatures, offering a powerful tool for constraining the DM nature through future multi-messenger observations of BNS mergers.