COMPASS is the longest-running experiment at CERN, with a record-breaking 20 years of data collection from 2002 to 2022. The experiment has a unique and diverse physics programme focused on nucleon structure and spectroscopy measurements.
This talk will review selected highlights from the COMPASS legacy on parton transverse momentum dependent nucleon spin structure studies and address...
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is the world's only polarized proton collider with center-of-mass energies up to 500 GeV and polarizations of about 60% for each proton beam. It provides unique opportunities to study the spin structure in hadronic systems and opens new kinematic regions compared to deep inelastic scattering. The three pillars of the...
The status of several CLAS12 semi-inclusive deep inelastic scattering measurements sensitive to TMDs, including several new results from a 10.5 GeV longitudinally polarized electron beam incident on a longitudinally polarized target, will be discussed. A focus will be placed on areas where CLAS12 and other fixed target experiments may be in friction with phenomenology, including effects from...
Generalized Parton Distributions (GPDs) are nowadays the object of an intense effort of research, in the perspective of understanding nucleon structure. They describe the correlations between the longitudinal momentum and the transverse spatial position of the partons inside the nucleon and they can give access to the contribution of the orbital momentum of the quarks and gluons to the nucleon...
Deeply Virtual Compton Scattering (DVCS) and Hard Exclusive Meson Production (HEMP) are valuable processes to study Generalized Parton Distributions (GPDs). By correlating the longitudinal momentum of the partons to their transverse spatial distribution inside the nucleon, GPDs reveal the 3-dimensional structure of the nucleon in QCD. Following a test run in 2012, exclusive measurements were...
SpinQuest, a fixed-target experiment at Fermilab, studies the Drell-Yan process by utilizing transversely polarized NH₃ and ND₃ targets alongside an unpolarized 120-GeV proton beam. The primary goal is to measure single spin azimuthal asymmetries that arise from the correlation between the transverse momentum of the struck quark and the spin of the parent nucleon, referred to as Sivers...