Speaker
Description
We introduce a model-agnostic search for new physics in the dijet final state. Other than the requirement of a narrow dijet resonance with a mass in the range of 1.8-6 TeV, minimal additional assumptions are placed on the signal hypothesis. Search regions are obtained by utilizing multivariate machine learning methods to select jets with anomalous substructure. A collection of complementary anomaly detection methods -- based on unsupervised, weakly-supervised and semi-supervised algorithms -- are used in order to maximize the sensitivity to unknown new physics signatures. These algorithms are applied to data corresponding to an integrated luminosity of 137 inverse femtobarns, recorded in the years 2016 to 2018 by the CMS experiment at the LHC, at a centre-of-mass energy of 13 TeV. Exclusion limits are derived on the production cross section of benchmark signal models varying in resonance mass, jet mass and jet substructure. Many of these signatures have not previously been searched for at the LHC, making the limits reported on the corresponding benchmark models the first ever and the most stringent to date.
Track | Anomaly detection |
---|