27–29 Nov 2024
CERN
Europe/Zurich timezone

Measuring interfacial diffusion of $^{8}Li^{+}$ in solid-state battery materials with ${\beta}$-NMR

27 Nov 2024, 18:05
1m
61/1-201 - Pas perdus - Not a meeting room - (CERN)

61/1-201 - Pas perdus - Not a meeting room -

CERN

10
Show room on map
Poster (In person) Poster session

Speaker

Amy Sparks (CERN)

Description

Solid-state batteries (SSBs) are considered as a promising solution to address the safety issues and energy density limitations of conventional liquid batteries$^{1,2}$. Although there have been significant breakthroughs in SSB technology in recent years, several challenges still need to be addressed before they reach the commercial market. A key challenge is their slow charge and discharge rates, which arises from poor ion diffusion and conductivity at the interfaces$^{3,4}$. Unfortunately, many standard techniques to study these materials are limited to the bulk, making interface optimization difficult$^{5-7}$. ${\beta}$-NMR, however, offers spatial precision for probing ion transport$^{8-10}$. Using ${\beta}$-NMR relaxometry as a function of temperature, we aim to compare $^{8}Li^{+}$ diffusion in the bulk and anode-electrolyte interface. These experiments, using electrolytes with varying Cl and S content (argyrodites $Li_{7}$P$S_{6}$, $Li_{7}$P$S_{6}$Cl, and $Li_{5.5}$P$S_{4.5}$$Cl_{1.5}$), will help determine the role of these anions in interfacial conductivity.

  1. Huang, Y., Shao, B., Han, F. 2022; pp. 1–20.
  2. Li, C., Wang, Z., He, Z., Li, Y., Mao, J., Dai, K., Yan, C., Zheng, J. Sustainable Materials and Technologies, 2021, 29, e00297.
  3. Otto, S., Riegger, L. M., Fuchs, T., Kayser, S., Schweitzer, P., Burkhardt, S., Henss, A., Janek, J. Adv Mater Interfaces, 2022, 9.
  4. Wenzel, S., Sedlmaier, S. J., Dietrich, C., Zeier, W. G., Janek, J. Solid State Ion, 2018, 318, 102–112.
  5. Vadhva, P., Hu, J., Johnson, M. J., Stocker, R., Braglia, M., Brett, D. J. L., Rettie, A. J. E. ChemElectroChem, 2021, 8, 1930–1947.
  6. Sivaraj, P., Abhilash, K. P., Nithyadharseni, P., Agarwal, S., Joshi, S. A., Sofer, Z. 2022; pp. 193–218.
  7. Boaretto, N., Garbayo, I., Valiyaveettil-SobhanRaj, S., Quintela, A., Li, C., Casas-Cabanas, M., Aguesse, F. J Power Sources, 2021, 502, 229919.
  8. Kowalska, M., Neyens, G. Nuclear Physics News, 2021, 31, 14–18.
  9. Stachura, M., Gottberg, A., Kowalska, M., Johnston, K., Hemmingsen, L. Nuclear Physics News, 2015, 25, 25–29.
  10. Abov, Yu. G., Gulko, A. D., Dzheparov, F. S. Physics of Atomic Nuclei, 2006, 69, 1701–1710.

Authors

Amy Sparks (CERN) Anu Nagpal (University of York (GB)) Mr Bartholomew Payne (Department of Materials, University of Oxford, Oxford, UK) Dalibor Zakoucky (Czech Academy of Sciences (CZ)) Daniel Paulitsch (University of Innsbruck (Universität Innsbruck)) Mr Gregory Rees (Department of Materials, University of Oxford, Oxford, UK) Ilaria Michelon (Universite de Geneve (CH)) Magdalena Kowalska (CERN) Mark Bissell (CERN) Mateusz Jerzy Chojnacki (Universite de Geneve (CH)) Mr Mauro Pasta (Department of Materials, University of Oxford, Oxford, UK) Dr Michael Pesek (Charles University (CZ)) Mikolaj Hubert Baranowski (Adam Mickiewicz University (PL)) Monika Piersa-Silkowska (CERN) Nikolay Azaryan (CERN) Mr Peter Bruce (Department of Materials, University of Oxford, Oxford, UK) Mr Zaher Salman (Paul Scherrer Institute, Villingen, Switzerland)

Presentation materials

There are no materials yet.