Conveners
Applications in Particle Physics
- Tommaso Dorigo (INFN Padova, Luleå University of Technology, MODE Collaboration, Universal Scientific Education and Research Network)
Applications in Particle Physics
- Pietro Vischia (Universidad de Oviedo and Instituto de Ciencias y Tecnologías Espaciales de Asturias (ICTEA))
Applications in Particle Physics
- Tommaso Dorigo (INFN Padova, Luleå University of Technology, MODE Collaboration, Universal Scientific Education and Research Network)
Applications in Particle Physics
- Tommaso Dorigo (INFN Padova, Luleå University of Technology, MODE Collaboration, Universal Scientific Education and Research Network)
We study the application of a spiking neural network architecture for identifying charged particle trajectories via unsupervised learning of synaptic delays using a spike-time-dependent plasticity rule. In the considered model, the neurons receive time-encoded information on the position of particle hits in a tracking detector for a particle collider, modeled according to the geometry of the...
Detector optimisation requires reconstruction paradigms to be adaptable to changing geometries during the optimisation process, as well as to be differentiable if they should become part of a gradient-based optimisation pipeline. Reinforcement learning recently demonstrated immense success in modelling complex physics-driven systems, providing end-to-end trainable solutions by interacting with...
The new fully software-based trigger of the LHCb experiment operates at a 30 MHz data rate and imposes tight constraints on GPU execution time. Tracking reconstruction algorithms in this first-level trigger must efficiently select detector hits, group them, build tracklets, account for the LHCb magnetic field, extrapolate and fit trajectories, and select the best track candidates to make a...
We introduce a novel approach for end-to-end black-box optimization of high energy physics (HEP) detectors using local deep learning (DL) surrogates. These surrogates approximate a scalar objective function that encapsulates the complex interplay of particle-matter interactions and physics analysis goals. In addition to a standard reconstruction-based metric commonly used in the field, we...
We present a case for the use of Reinforcement Learning (RL) for the design of physics instruments as an alternative to gradient-based instrument-optimization methods in arXiv:2412.10237. As context, we first reflect on our previous work optimizing the Muon Shield following the experiment’s approval—an effort successfully tackled using classical approaches such as Bayesian Optimization,...
In this work we simulate hadrons impinging on a homogeneous lead-tungstate (PbWO4) calorimeter to investigate how the resulting light yield and its temporal structure, as detected by an array of light-sensitive sensors, can be processed by a neuromorphic computing system. Our model encodes temporal photon distributions in the form of spike trains and employs a fully connected spiking neural...
In this work we consider the problem of determining the identity of hadrons at high energies based on the topology of their energy depositions in dense matter, along with the time of the interactions. Using GEANT4 simulations of a homogeneous lead tungstate calorimeter with high transverse and longitudinal segmentation, we investigated the discrimination of protons, positive pions, and...
The design of calorimeters presents a complex challenge due to the large number of design parameters and the stochastic nature of physical processes involved. In high-dimensional optimization, gradient information is essential for efficient design. While first-principle based simulations like GEANT4 are widely used, their stochastic nature makes them non-differentiable, posing challenges in...
The Meadusa (Multiple Readout Ultra-High Segmentation) Detector Concept is an innovative approach to address the unique challenges and opportunities presented by the future lepton colliders and beyond. The Meadusa concept prioritizes ultra-high segmentation and multi-modal data acquisition to achieve ultra-high spatial, timing and event structure precision in particle detection. By combining a...
Setup design is a critical aspect of experiment development, particularly in high-energy physics, where decisions influence research trajectories for decades. Within the MODE Collaboration, we aim to generalize Machine Learning methodologies to construct a fully differentiable pipeline for optimizing the geometry of the Muon Collider Electromagnetic Calorimeter.
Our approach leverages...
The energy calibration of calorimeters at collider experiments, such as the ones at the CERN Large Hadron Collider, is crucial for achieving the experiment’s physics objectives. Standard calibration approaches have limitations which become more pronounced as detector granularity increases. In this paper we propose a novel calibration procedure to simultaneously calibrate individual detector...