29 February 2012 to 2 March 2012
Jozef Stefan Institute
Europe/Zurich timezone

Overview of the ATLAS Insertable B-Layer (IBL) Project

29 Feb 2012, 11:35
25m
Main Lecture Hall (Jozef Stefan Institute)

Main Lecture Hall

Jozef Stefan Institute

Jamova 39, Ljubljana, Slovenia

Speaker

Christian Gallrapp (Technische Universitaet Berlin (DE))

Description

The upgrades for the ATLAS Pixel Detector will be staged in preparation for high luminosity LHC. The first upgrade for the Pixel Detector will be the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine, foreseen in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and a more stringent material budget. Two different and promising silicon sensor technologies, planar n-in-n and 3D, are currently under investigation for the IBL. An overview of the IBL project, of the module design and the qualification for these sensor technologies with particular emphasis on irradiation and beam tests will be presented.

Summary

The upgrades for the ATLAS Pixel Detector will be staged in preparation for high luminosity LHC. The first upgrade for the Pixel Detector will be the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine, foreseen in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and a more stringent material budget. Two different and promising silicon sensor technologies, planar n-in-n and 3D, are currently under investigation for the IBL. An overview of the IBL project, of the module design and the qualification for these sensor technologies with particular emphasis on irradiation and beam tests will be presented.

Author

Christian Gallrapp (Technische Universitaet Berlin (DE))

Presentation materials