Speaker
Ota Kukral
(Czech Technical University, Prague)
Description
Suppression of quarkonia production in high energy nuclear collisions relative to proton-proton collisions, due to color screening of the quark-antiquark potential, has been predicted to be a sensitive indicator of the temperature of the created QGP. However, initial state cold nuclear matter effects, production via recombination of quark-antiquark pairs in the QGP and dissociation in hadronic phase could also alter the expected suppression picture. Systematic measurements of the quarkonia production in different colliding systems are hence crucial for disentangling relative contributions of these effects.
At the STAR experiment we can utilize collisions of uranium nuclei to further study the quarkonia suppression pattern. Since the uranium nuclei are non-spherical, we are able to reach higher energy densities in the most central U+U collision compared to Au+Au collisions. In this poster, we will present the transverse momentum spectrum (0<$p_{\rm T}$<6 GeV/c) and nuclear modification factor of $J/\psi$ production, reconstructed at midrapidity via di-electron decay channel, in minimum bias U+U collisions at $\sqrt{s_{NN}}=193$ GeV in the STAR experiment.
On behalf of collaboration: | STAR |
---|
Authors
Ota Kukral
(Czech Technical University, Prague)
Dr
Petr Chaloupka
(Czech Technical Univesity in Prague)