Speaker
Mikhail Solon
Description
In the era of precision cosmology, understanding the formation of large scale structure (LSS) is essential for gaining insight into physics beyond the Standard Model and of the primordial universe. To that end, effective field theory (EFT) techniques familiar in high-energy physics are being developed for efficient and precise calculations of LSS observables.
In this talk, we present the non-Gaussian contribution to the covariance of the matter power spectrum at one-loop order in Standard Perturbation Theory (SPT), and using the framework of the EFT of LSS. The complete one-loop contributions are evaluated for the first time, including the leading EFT corrections that involve seven independent operators, of which four appear in the power spectrum and bispectrum. In the basis where the three new operators are maximally uncorrelated, we find that two of them are suppressed at the few percent level relative to other contributions, and may thus be neglected. We extract the single remaining coefficient from N-body simulations, and obtain robust predictions for the non-Gaussian part of the covariance C(ki, kj ) up to ki + kj ∼ 0.3 h/Mpc.
Authors
Daniele Bertolini
(Massachusetts Institute of Technology)
Jonathan Walsh
(University of Washington)
Katelin Schutz
(UC Berkeley)
Kathryn Zurek
(LBNL)
Mikhail Solon