Description
Chairs: Matteo Solfaroli, Markus Zerlauth
Scientific Secretaries: Mirko Pojer, David Nisbet
Numerous fault tracking concepts and requirements were defined by the LHC Availability Working Group (AWG) during the study of LHC Run 1 availability (2010-2012). During Long-Shutdown 1 (LS1), these requirements were converted into an Accelerator Fault Tracker (AFT) tool, by a BE/CO, BE/OP and TE/MPE initiative. This paper presents an overview of the AWG concepts and requirements for...
Increasing LHC availability is one of the key challenges for improving luminosity production in the next years and particularly in view of HL-LHC. Both hardware performance and beam-related effects have an impact on the achieved availability and are directly influenced by the LHC operating conditions (e.g. in terms of radiation levels, number of beam-induced quenches, etc.). A review of the...
The first part of the presentation summarizes the cryogenic performance and availability for 2015 and the expected performance for 2016 after completion of the YETS activities. The cryogenic configuration used in 2015, observed issues and proposed improvements will be detailed. The second part of the presentation will focus on cryogenic power studies (design, installed, available) in order...
The contribution will review the upgrades to the LHC quench detection system (QDS) performed during LS1 and discuss the QDS dependability during LHC operation in 2015. The QDS performance with respect to reliability, availability and maintainability will be presented and analysed, including issues specific to the ion run. An account of the consolidation measures already successfully...
From individual system tests and commissioning after LS1 up to operation with beam, the talk will start with a quick overview on the main phases that the LHC magnet circuits have experienced since the last Chamonix meeting. The main faults and events along the 2015 beam operation will be reported and classified according to system, frequency and impact to downtime. The systems and aspects...
The hardware performance of the LHC power converters during 2015 is presented. After a brief summary of the changes made during LS1, the performance of the power converters will be detailed by presenting the availability matrices of the different systems. The efficiency of the mitigations deployed during LS1 as well as the remaining observed failure modes are discussed. Finally, an outlook...
The most critical failure scenarios for LHC machine protection concern the injection and dump systems. In view of operation at higher energy and intensity and in light of the experience gained during Run 1, several upgrades were put in place to further enhance the reliability of these systems. Changes were applied both to the protection elements and the kickers (magnets,...