12–17 Jun 2016
University of Ottawa
America/Toronto timezone
Welcome to the 2016 CAP Congress! / Bienvenue au congrès de l'ACP 2016!

A Phononic Crystal Waveguide for Surface Acoustic Waves

14 Jun 2016, 19:04
2m
SITE Atrium (University of Ottawa)

SITE Atrium

University of Ottawa

Poster (Student, In Competition) / Affiche (Étudiant(e), inscrit à la compétition) Condensed Matter and Materials Physics / Physique de la matière condensée et matériaux (DCMMP-DPMCM) DCMMP Poster Session with beer / Session d'affiches, avec bière DPMCM

Speaker

Mr Edward Muzar (Queen's University)

Description

Surface acoustic waves (SAWs) on semiconductors, such as gallium arsenide (GaAs), are able to control quantum processes. SAW devices are augmented with phononic crystal waveguides to have fine control of the acoustic path. A phononic crystal in a GaAs substrate is produced by wet etching a square lattice array of void inclusions with an L1 defect. GaAs by its piezoelectricity, is suited for SAW generation via interdigitated transducers (IDTs). Initially, an IDT design must allow for determination of the phononic crystal mode frequency which is difficult to predict exactly. IDTs with uniform adjacent electrode overlap produce a narrow SAW bandwidth, which is even narrower with additional electrodes. Such low bandwidth is not practical for probing the mode frequency since it is unlikely to coincide. However, adjacent electrode overlap and a large number of electrodes are necessary to achieve appreciable SAW amplitude on GaAs; hence an optimized IDT is necessary for sufficient bandwidth and amplitude. Apodized IDTs with varying electrode overlap are developed for large SAW bandwidth and amplitude to probe the waveguide mode frequency. Once the mode is determined, focusing, narrowband IDTs on GaAs are then utilized for high power excitation of the phononic crystal mode frequency. The SAW vertical displacement amplitude is measured with surface scanning Sagnac interferometry as the SAW interacts with the phononic crystal. Spatial and frequency mapping of the SAW vertical displacement amplitude is analyzed to determine transmission and modal qualities of the phononic crystal waveguide.

Primary author

Mr Edward Muzar (Queen's University)

Co-authors

Ms Golnaz Azodi Aval (Queen's University) Dr James Stotz (Queen's University)

Presentation materials

There are no materials yet.