Speaker
Description
In this talk we present the consequences of considering correlated constituents inside the proton on the initial state properties of p+p interactions at LHC energies [1,2]. The proton is modeled as a system of gluonic hot spots whose transverse positions are subjected to short-range repulsive correlations. We rely on a Monte Carlo Glauber approach with event-by-event fluctuations in the transverse positions of the hot spots and their entropy deposition. In fact the inclusion of non-trivial spatial correlations leads to substantial differences in the results for initial state properties, the spatial eccentricities. Further we show the centrality dependence of the (anti)-correlation of
[1] Physics Letters B 770, 149 (2017)
[2] arXiv: 1612.06274 [hep-ph] (to appear in PRC).