Speaker
Description
The Super Cryogenic Dark Matter Search (SuperCDMS) and its predecessor CDMS have been at the forefront of the search for Weakly Interacting Massive dark matter Particles (WIMPs) for close to two decades. Significant improvements in detector technology have opened up the low-mass parameter space ( $^\lt\!\!\!\!_\sim$ 10 GeV/c$^2$) where the experiment broke new ground with the CDMS low ionization threshold (CDMSlite) experiment. Building on this success, SuperCDMS is preparing for the next phase of the experiment to be located at SNOLAB near Sudbury, Ontario. The new experimental setup will provide space for up to $\sim$200 kg of target mass in a considerably lower background environment. The initial payload of $\sim$30 kg will be a mix of germanium and silicon targets in the form of both background discriminating iZIP and low-threshold HV detectors, pushing the sensitivity towards WIMPs with even lower masses and improving the cross-section reach of SuperCDMS by more than an order of magnitude. The long-term goal is to reach the neutrino-floor below 10 GeV/c$^2$. In this talk I will present the status of and plans for SuperCDMS at SNOLAB.