Presentation materials
Neutrino interactions, though feeble, are tremendously important in particle physics and astrophysics. Yet, at neutrino energies above 350 GeV there has been, up to now, no direct experimental information on neutrino interactions, only predictions. Now, we can measure the neutrino-nucleon cross section above 10 TeV, thanks to the recent discovery of high-energy astrophysical neutrinos by...
Two years ago, the AMS collaboration released the most precise measurement of the cosmic ray positron flux. It confirms that pure secondary predictions fall below the data above 10 GeV, suggesting the presence of a primary component, e.g. annihilations of WIMPs dark matter. Most analyses have focused on the high-energy part of the spectrum, disregarding the GeV energy region where cosmic ray...
The dominant models that can describe the non - thermal radiation by high energy astrophysical objects, can be divided into two categories, i.e. the leptonic and the hadronic ones. The former one suggests that the high energy radiation is produced by physical processes associated with a population of highly relativistic electrons. On the other hand, the hadronic model assumes that the observed...
Molecular hydrogen has been identified as a search ground for physics beyond the Standard Model. This is complementary to searches motivated by high-energy and astroparticle physics, as we search for subtle effects at the low-energy scale in the spectra of simple molecules. The quantum level structure of the hydrogen molecule can now be calculated to very high precision. These theoretical...