13-19 May 2018
Venice, Italy
Europe/Zurich timezone
The organisers warmly thank all participants for such a lively QM2018! See you in China in 2019!

Influence of final-state radiation on heavy-flavour observables in pp collisions

15 May 2018, 17:00
2h 40m
First floor and third floor (Palazzo del Casinò)

First floor and third floor

Palazzo del Casinò

Poster Open heavy flavour Poster Session


Luuk Vermunt (Utrecht University (NL))


Initial- and final-state radiation are important processes for the physical interpretation of high-energy collisions at the Large Hadron Collider. Calculations of these perturbative QCD corrections are, however, limited to probabilistic approximations using parton shower approaches in event generators. Although this Monte-Carlo DGLAP description is nowadays state-of-the-art, there still exist significant differences on the quantitative level. To address these open questions, it is important to investigate final-state radiation processes experimentally by identifying sensitive observables.

In this study, a new transverse momentum correlation observable, the momentum imbalance between D and Dbar mesons, is identified as a sensitive tool to study final-state radiation. This is shown by using simulations with the EPOS3+HQ model and the event generator Pythia 6. The presented results will focus on heavy-flavour particles only because these are most likely pair-produced in the initial stages of the collision. With the upcoming detector upgrades for LHC Run-3, statistically significant correlation measurements of these heavy-flavour particles will become feasible. In the end, this method can be extended to pA and AA data to study several aspects of energy loss in heavy-ion collisions.

Centralised submission by Collaboration Presenter name already specified
Content type Theory

Primary author

Luuk Vermunt (Utrecht University (NL))


Joerg Aichelin (Subatech, Nantes) Pol-Bernard Gossiaux (Subatech, Nantes) Andre Mischke (Utrecht University (NL))

Presentation Materials

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now