Speaker
Description
One of the key results of the LHC Run 1 was the observation of an enhanced production of strange particles in high multiplicity pp and p-Pb collisions at 7 and 5.02 TeV, respectively. A smooth increase of strange particles relative to the non-strange ones with event multiplicity has been observed in such systems. Results from Run 2 at the top LHC energy are extended exploiting a dedicated high multiplicity trigger. This offers the unique opportunity to study, in elementary collisions, the multiplicity range covered by semi-peripheral Pb-Pb collisions.
We present the latest results on multiplicity-dependent strangeness production at LHC energies with ALICE. The strangeness enhancement is investigated by measuring the evolution with multiplicity of single-strange and multi-strange baryon production relative to non-strange particles. We also present recent measurements of mesonic and baryonic resonances in small collision systems. We investigate the system size dependence in pp and p-Pb collisions to study how hadronic scattering processes affect measured resonance yields, as well as the interplay between canonical suppression and strangeness enhancement. The measurement of the $\phi(1020)$ meson as a function of multiplicity provides crucial constraints in this context. Energy and system-type invariance are discussed and an extensive comparison with statistical hadronization and QCD-inspired models is presented.
Content type | Experiment |
---|---|
Collaboration | ALICE |
Centralised submission by Collaboration | Presenter name already specified |