13–19 May 2018
Venice, Italy
Europe/Zurich timezone
The organisers warmly thank all participants for such a lively QM2018! See you in China in 2019!

On the spin correlations of final leptons generated in the processes of annihilation of $(e^+ e^-)$ pairs, formed in relativistic heavy-ion collisions, and in the high-energy two-photon processes $\gamma \gamma \rightarrow e^+ e^-, \mu^+ \mu^-, \tau^+ \tau^-$

15 May 2018, 17:00
2h 40m
First floor and third floor (Palazzo del Casinò)

First floor and third floor

Palazzo del Casinò

Poster Correlations and fluctuations Poster Session

Speaker

Dr Valery Lyuboshitz (Joint Institute for Nuclear Research, Dubna )

Description

The electromagnetic processes of annihilation of $(e^+ e^-)$ pairs, produced
in high-energy nucleus-nucleus collisions, into heavy lepton pairs are
theoretically studied in the one-photon approximation, using the technique of
helicity amplitudes . For the process $e^+e^- \rightarrow \mu^+\mu^-$, it is
shown that -- in the case of the unpolarized electron and positron -- the final
muons are also unpolarized but their spins are strongly correlated. For the
final $(\mu^+ \mu^-)$ system, the structure of triplet states is analyzed and
explicit expressions for the components of the spin density matrix and
correlation tensor are derived. It is demonstrated that here the spin correlations
of muons have the purely quantum character, since one of the Bell-type
incoherence inequalities for the correlation tensor components is always violated.
In doing so, it is established that the qualitative character of the muon spin
correlations does not change when involving the additional contribution of the
weak interaction of lepton neutral currents through the virtual $Z^0$ boson.

On the other hand, the theoretical investigation of spin structure for the two-photon
process $\gamma \gamma \rightarrow e^+e^-$ ( where the photon pairs, in
particular, may be emitted in relativistic heavy-ion and hadron-nucleus collisions )
is performed as well. Here -- quite similarly to the process
$e^+e^- \rightarrow \mu^+\mu^-$ -- in the case of unpolarized photons the final
electron and positron remain unpolarized, but their spins prove to be strongly
correlated. Explicit expressions for the components of the correlation tensor
and for the relative fractions of singlet and triplet states of the final $(e^+ e^-)$
system are derived. Again, one of the Bell-type incoherence inequalities for the
correlation tensor components is always violated and, thus, spin correlations of
the electron and positron have the strongly pronounced quantum character.

Analogous considerations can be wholly applied as well, respectively, to the
annihilation process $e^+ e^- \rightarrow \tau^+ \tau^-$ and to the two-photon
processes $\gamma \gamma \rightarrow \mu^+ \mu^-$, $\gamma \gamma \rightarrow \tau^+ \tau^-$, which become possible at considerably higher energies.

Content type Theory
Centralised submission by Collaboration Presenter name already specified

Author

Dr Valery Lyuboshitz (Joint Institute for Nuclear Research, Dubna )

Co-author

Dr Vladimir Lyuboshitz (Joint Institute for Nuclear Research, Dubna)

Presentation materials