Speaker
Description
We develop a macroscopic description of the space-time evolution of the energy momentum tensor during the pre-equilibrium stage of a high-energy heavy-ion collision. Based on a weak coupling effective kinetic description of the microscopic equilibration process (a la ``bottom-up"), we calculate the non-equilibrium evolution of the local background energy-momentum tensor as well as the non-equilibrium linear response to transverse energy and momentum perturbations for realistic boost-invariant initial conditions for heavy ion collisions. We demonstrate that this framework can be used on an event-by-event basis to propagate the energy momentum tensor from far-from-equilibrium initial state models, e.g. IP-Glasma, to the time $\tau_\text{hydro}$ when the system is well described by relativistic viscous hydrodynamics. We show that with kinetic theory pre-equilibrium, the final hadron multiplicities and radial and elliptic flows become essentially independent of the hydrodynamic initialization time $\tau_\text{hydro}$. The effective kinetic description of the pre-equilibrium evolution can be also used for studying the chemical equilibration of quarks and gluons and the pre-equilibrium photon production.
Content type | Theory |
---|---|
Centralised submission by Collaboration | Presenter name already specified |