10-16 June 2018
Dalhousie University
America/Halifax timezone
Welcome to the 2018 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2018!

Material Candidates for Nonlinear Photonic Devices (I)

13 Jun 2018, 15:30
SUB 307 (cap. 80) (Dalhousie University)

SUB 307 (cap. 80)

Dalhousie University

Invited Speaker / Conférencier(ère) invité(e) Division of Atomic, Molecular and Optical Physics, Canada / Division de la physique atomique, moléculaire et photonique, Canada (DAMOPC-DPAMPC) W4-2 Nonlinear Optics (DAMOPC) | Optique non linéaire (DPAMPC)


Prof. Ksenia Dolgaleva (University of Ottawa)


Rapid development of nanofabrication has stimulated the growth of the field of nonlinear photonics. Nonlinear photonic devices are finding their applications in more and more areas, including (but not limited to) classical and quantum communications. The material platforms used for nonlinear photonics on-a-chip range from transparent dielectrics with a relatively weak nonlinearity to semiconductor materials with strong nonlinear interactions. Among the materials for nonlinear photonics, III-V semiconductors stand out due to the large variety of compounds suitable for different spectral ranges that can be realized. There is, however, very little information available on the nonlinear optical performance of various III-V semiconductor compounds. There are very few representatives assessed for their nonlinear optical performance (e.g., AlGaAs), and many more materials offering a variety of operation ranges and applications that have never been studied for that role.

In this presentation, I propose the approach towards identifying interesting material candidates suitable for nonlinear photonics, and present the results of some experimental studies performed in this direction. More specifically, I will talk about our studies of GaN waveguides with wide electronic bandgap, suitable for the applications in the visible and near-infrared spectral ranges. I will also present the results of our experimental realization of passive InGaAsP waveguides that have potentials of being used for wavelength conversion to beyond 2 micrometers, thus expanding the operation range of well-established InGaAsP laser sources to the longer wavelengths.

Primary authors

Prof. Ksenia Dolgaleva (University of Ottawa) Kashif Awan (University of Ottawa) Shayan Saeidi (University of Ottawa) Payman Rasekh (University of Ottawa)

Presentation Materials

There are no materials yet.