Speaker
Description
We investigate various scenarios of fermion mass generation in $SO(5)\times U(1)$ models of gauge-Higgs unification, where the Higgs field is a composite Goldstone boson of a new strong sector. If the top quark is the main driving force of EWSB, the parameters of the $(t,b)_L$ doublet are strongly constrained by Z pole observables. The hierarchical mass ratio between the top and bottom quark implies that the $b_R$ must be strongly composite. While a composite $b_R$ is consistent with current experimental limits, it leads to sizable coupling deviations that can be probed by future accelerators such as ILC. The lepton sector has more freedom in model-building, but the most minimal setup again suggests that right-handed singlets are composite fermions. We consider different quantum number assignments for leptons and study the signatures of the reaction $e^+ e^- \rightarrow l^+l^-$ to distinguish them.