Due to technical problems on the CERN SSO system, logging in is currently failing intermittently.
Jul 30 – 31, 2018
Instituto de Física da Universidade de São Paulo
America/Sao_Paulo timezone
Evento comemorativo dos 10 anos da Rede Nacional de Física de Altas Energias

Uma Leitura com Fotomultiplicadoras Multi-Anodos para se Atingir uma Granularidade Mais Fina com o Principal Calorímetro Hadrônico do ATLAS

Jul 30, 2018, 9:30 AM
15m
Auditório Novo 2 (Instituto de Física da Universidade de São Paulo)

Auditório Novo 2

Instituto de Física da Universidade de São Paulo

Instrumentação Instrumentação

Speaker

Philipp Gaspar (Federal University of Rio de Janeiro (BR))

Description

A segunda fase do upgrade do LHC terá uma luminosidade integrada dez vezes maior ($3000~fb^{-1}$) que os dados coletados durante as Runs I-III, em conjunto. Com isso o upgrade do principal calorímetro hadrônico do ATLAS (TileCal), durante o regime de alta luminosidade, inclui uma renovação completa da sua eletrônica, porém sem alterar as características mecânicas e óticas do detector. Atualmente, as telhas cintilantes do TileCal são agrupadas com o objetivo de formar as células do calorímetro. Assim, o TileCal possui uma resolução geométrica que é determinada pelo tamanho de suas células e a quantidade de fibras acopladas às suas fotomultiplicadoras. Contudo, há uma possibilidade técnica de utilizar informações individuais de cada uma das telhas, a fim de tornar mais fina a granularidade do detector, modificando apenas a forma da leitura do sinal ótico do calorímetro sem alterar sua parte mecânica.

Jatos de partículas com alto momento transverso tendem a depositar sua energia em camadas mais profundas do calorímetro. Portanto, ao dividir estas células em diferentes sub-regiões, será possível adquirir, com mais detalhes, o perfil longitudinal dos jatos. Além disso, melhorias na reconstrução do momento, massa e medidas de posição angular dos jatos, juntamente com outras variáveis como energia transversa, também serão beneficiadas por um detector de granularidade mais fina. Para isto, deseja-se empregar, para cada célula, um tubo fotomultiplicador com capacidade de leitura multi-anodo, que é capaz de ler o sinal de cada fibra individualmente e, assim, obter informação adicional da distribuição de energia depositada numa célula.

O processamento de sinais desenvolvido objetiva associar a imagem formada na fotomultiplicadora multi-anodal à uma região espacial da célula em questão. Métodos de separação cega de fontes estão sendo aplicados. Em particular, a Fatoração Não-Negativa de Matrizes (NMF), devida à restrição de dados não-negativos ser uma característica dos pixels que formam as imagens na fotomultiplicadora. Introduzindo esparsidade aos fatores da NMF, podemos interpretar a técnica como um método de clusterização, que associa uma sub-região da célula à um determinado cluster. A Análise de Componentes Independentes (ICA) também foi aplicada com o objetivo de estimar os sinais originais de cada uma das telhas, a partir das misturas lineares das fontes. Resultados preliminares mostram uma possível separação da célula em sub-regiões direita e esquerda, tornando possível uma granularidade duas vezes mais fina que a atual.

Primary authors

Philipp Gaspar (Federal University of Rio de Janeiro (BR)) Creison Nunes (Federal University of Rio de Janeiro (BR)) Jose Seixas (Federal University of Rio de Janeiro (BR))

Presentation materials