Speaker
Description
A strongly interacting state of matter known as the Quark-Gluon Plasma (QGP) is formed in the high temperature and energy density conditions reached in ultra-relativistic heavy-ion collisions. Historically, one of the signatures of the formation of such a system was the enhanced production of strange and multi-strange hadrons with respect to non-strange. The ALICE detector is ideally suited to study identified particle production rates. The excellent tracking and particle identification capabilities allow the reconstruction of multi-strange baryons (Ξ−, Ξ ̄+, Ω− and Ω ̄+) via their weak decay channels over a large range in transverse momentum (pT). In this work, we report on the pT spectra and total yield of such hadrons at central rapidity in several centrality classes as measured by ALICE for Pb-Pb collisions at the energy of √sNN = 5.02 TeV and for Xe-Xe collisions at √sNN = 5.44 TeV. The yields are normalized by the corresponding measurement of pion production in the same centrality class in order to study the enhancement of multi-strange hadrons. Comparison of hyperon-to-pion ratio between different systems, such as pp, p-Pb, Xe-Xe and Pb-Pb collisions shows that production of multi-strange baryons relative to pions follows a continuously increasing trend from low multiplicity pp to central AA collisions.