Brief description:The LHC experiments continue to produce a wealth of valuable High Energy Physics data, which offer numerous possibilities for new discoveries. Big data technologies like Apache Spark show great potential in speeding up the existing procedures. This talk will focus on a number of important questions. How do we use the data produced at the collisions of protons inside the detector to create a histogram that proves the existence of the Higgs boson? What are the problems faced? What are the challenges? How do we perform Physics Analysis with Big Data Technologies?

The attendance of this lecture is optional.

Speaker's short bio: 

Evangelos Motesnitsalis is a Big Data Engineer at the IT Department of CERN. He supports the scientific communities at CERN in their quest to perform big data analytics over physics and accelerator data. He has led the development of the Hadoop-XRootD Connector library, a project that provides direct access of data from XRootD-based storage systems directly into Hadoop and Spark. He is a former Escalation Engineer and Big Data Devops Support Engineer at Amazon Web Services in Dublin, Ireland. He obtained his MSc in Distributed Systems from Imperial College London in 2015 and he has also studied at King's College London and Aristotle University of Thessaloniki.

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now