Speaker
Description
The main goal of the CBM experiment at FAIR is to study the behavior of nuclear matter at very high baryonic density. This includes the exploration of the high density equation of state, search for the transition to a deconfined and chirally restored phase, critical endpoint. The promising diagnostic probes for this new states are the enhanced production of multi-strange (anti-)particles. The CBM detector is designed to measure such rare diagnostic probes multi-differentially with unprecedented precision and statistics. Important key observables are the production of hypernuclei and dibaryons. Theoretical models predict that single and even doubly-strange hypernuclei are produced in heavy-ion collisions with the maximum yield in the region of SIS100 energies. The discovery and investigation of new (doubly strange-)hypernuclei and of hyper-matter will shed light on the hyperon-nucleon and hyperon-hyperon interactions. Results of feasibility studies of these key CBM observables in the CBM experiment are discussed.
Track | Upgrades and new experiments |
---|---|
Collaboration name | CBM Collaboration |