-
09:00
Daily announcements
-
09:05
Applying Generative Models to Scientific Research
-
Fedor Ratnikov
(Yandex School of Data Analysis (RU))
-
09:35
DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
-
Serena Palazzo
(The University of Edinburgh (GB))
-
09:55
High Granularity Calorimeter Simulation using Generative Adversarial Networks
-
Gul Rukh Khattak
(University of Peshawar (PK))
-
10:15
Deep generative models for fast shower simulation in ATLAS
-
Aishik Ghosh
(Centre National de la Recherche Scientifique (FR))
-
11:05
Fast Simulation Using Generative Adversarial Network in LHCB
-
Artem Maevskiy
(National Research University Higher School of Economics (RU))
-
11:25
Model-Assisted GANs for the optimisation of simulation parameters and as an algorithm for fast Monte Carlo production
-
Saul Alonso Monsalve
(CERN)
-
11:45
Event Generation and Statistical Sampling with Deep Generative Models
-
Sydney Otten
(Radboud Universiteit Nijmegen)
-
12:05
LUMIN - a deep learning and data science ecosystem for high-energy physics
-
Giles Chatham Strong
(LIP Laboratorio de Instrumentacao e Fisica Experimental de Part)