3rd IML Machine Learning Workshop

from Monday, 15 April 2019 (09:00) to Thursday, 18 April 2019 (20:00)
CERN (500/1-001)

        : Sessions
    /     : Talks
        : Breaks
15 Apr 2019
16 Apr 2019
17 Apr 2019
18 Apr 2019
AM
09:00
Invited keynote talks - Steven Randolph Schramm (Universite de Geneve (CH)) Paul Seyfert (CERN) (until 10:50) (500/1-001 - Main Auditorium)
09:00 Welcome - Steven Randolph Schramm (Universite de Geneve (CH))   (500/1-001 - Main Auditorium)
09:20 Conceptual overview of ML in HEP - Dr Sergei Gleyzer (University of Florida (US))   (500/1-001 - Main Auditorium)
10:05 Future areas of focus for ML in particle physics - Kyle Stuart Cranmer (New York University (US))   (500/1-001 - Main Auditorium)
10:50 --- Coffee break ---
11:15
Joint lecture/seminar - Olaf Behnke (Deutsches Elektronen-Synchrotron (DE)) Louis Lyons (Imperial College (GB)) (until 12:15) (500/1-001 - Main Auditorium)
11:15 On the Statistical Mechanics and Information Theory of Deep Learning for Particle Physicists - Prof. Naftali Tishby (Hebrew University of Jerusalem)   (500/1-001 - Main Auditorium)
09:00
Submitted contributions - Paul Seyfert (CERN) Lorenzo Moneta (CERN) (until 10:45) (500/1-001 - Main Auditorium)
09:00 Daily announcements   (500/1-001 - Main Auditorium)
09:05 Machine Learning Uncertainties with Adversarial Neural Networks - Dr Peter Galler (University of Glasgow)   (500/1-001 - Main Auditorium)
09:25 Decoding Physics Information in DNNs - Taoli Cheng (University of Montreal)   (500/1-001 - Main Auditorium)
09:45 Learning Invariant Representations using Mutual Information Regularization - Mr Justin Tan (University of Melbourne)   (500/1-001 - Main Auditorium)
10:05 Neural networks for the abstraction of the physical symmetries in the nature - Wonsang Cho (Seoul National University)   (500/1-001 - Main Auditorium)
10:25 Containers for Machine Learning in HEP - Matthew Feickert (Southern Methodist University (US))   (500/1-001 - Main Auditorium)
10:45 --- Coffee break ---
11:15
Invited plenary talk (until 12:30) (500/1-001 - Main Auditorium)
11:15 The information theory of Deep Learning - Prof. Naftali Tishby (Hebrew University of Jerusalem)   (500/1-001 - Main Auditorium)
09:00
Submitted contributions - Paul Seyfert (CERN) Lorenzo Moneta (CERN) (until 12:30) (500/1-001 - Main Auditorium)
09:00 Daily announcements   (500/1-001 - Main Auditorium)
09:05 Applying Generative Models to Scientific Research - Fedor Ratnikov (Yandex School of Data Analysis (RU))   (500/1-001 - Main Auditorium)
09:35 DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC - Serena Palazzo (The University of Edinburgh (GB))   (500/1-001 - Main Auditorium)
09:55 High Granularity Calorimeter Simulation using Generative Adversarial Networks - Gul Rukh Khattak (University of Peshawar (PK))   (500/1-001 - Main Auditorium)
10:15 Deep generative models for fast shower simulation in ATLAS - Aishik Ghosh (Centre National de la Recherche Scientifique (FR))   (500/1-001 - Main Auditorium)
10:35 --- Coffee break ---
11:05 Fast Simulation Using Generative Adversarial Network in LHCB - Artem Maevskiy (National Research University Higher School of Economics (RU))   (500/1-001 - Main Auditorium)
11:25 Model-Assisted GANs for the optimisation of simulation parameters and as an algorithm for fast Monte Carlo production - Mr Saul Alonso Monsalve (CERN)   (500/1-001 - Main Auditorium)
11:45 Event Generation and Statistical Sampling with Deep Generative Models - Sydney Otten (Radboud Universiteit Nijmegen)   (500/1-001 - Main Auditorium)
12:05 LUMIN - a deep learning and data science ecosystem for high-energy physics - Giles Chatham Strong (LIP Laboratorio de Instrumentacao e Fisica Experimental de Part)   (500/1-001 - Main Auditorium)
09:00
Tutorials - Lorenzo Moneta (CERN) Rudiger Haake (Yale University (US)) (until 13:10) (500/1-001 - Main Auditorium)
09:00 Introduction to the basics of deep learning - Yannik Alexander Rath (RWTH Aachen University (DE))   (500/1-001 - Main Auditorium)
10:30 --- Coffee break ---
11:00 Physics inspired Autonomous Feature Engineering - Marcel Rieger (RWTH Aachen University (DE))   (500/1-001 - Main Auditorium)
12:00 Traditional approach to network architecture optimisation - Andrey Ustyuzhanin (Yandex School of Data Analysis (RU))   (500/1-001 - Main Auditorium)
12:30 Differentiable architecture search - Andrey Ustyuzhanin (Yandex School of Data Analysis (RU))   (500/1-001 - Main Auditorium)
PM
12:30 --- Lunch ---
14:00
Industry talks and panel - Markus Stoye (CERN) David Rousseau (LAL-Orsay, FR) (until 18:00) (500/1-001 - Main Auditorium)
14:00 Introduction - Markus Stoye (CERN)   (500/1-001 - Main Auditorium)
14:20 Amazon AI: Tensor and Higher-Order Generalizations of the GSVD with Applications to Personalized Cancer Medicine - Dr Priya Ponnapalli (Amazon AI)   (500/1-001 - Main Auditorium)
15:05 Google DeepMind: Compressing neural networks - Dr Tim Genewein (DeepMind)   (500/1-001 - Main Auditorium)
16:00 --- Coffee break ---
16:30 B12 Consulting: Big value out of small data - Dr Michel Herquet (B12)   (500/1-001 - Main Auditorium)
17:05 Industry panel - Dr Tim Genewein (DeepMind) Dr Michel Herquet (B12)   (500/1-001 - Main Auditorium)
18:00 --- Welcome reception ---
12:30 --- Lunch ---
13:59
Q&A with Prof. Naftali Tishby - Louis Lyons (Imperial College (GB)) (until 15:00) (31/3-004 - IT Amphitheatre)
14:15 Q&A with Prof. Naftali Tishby - Prof. Naftali Tishby (Hebrew University of Jerusalem)   (31/3-004 - IT Amphitheatre)
14:00
Submitted contributions - David Rousseau (LAL-Orsay, FR) Steven Randolph Schramm (Universite de Geneve (CH)) (until 16:00) (500/1-001 - Main Auditorium)
14:00 Novelty Detection Meets Collider Physics - Ms Ying-Ying Li (HKUST)   (500/1-001 - Main Auditorium)
14:30 Uncertain Networks - Jennifer Thompson (ITP Heidelberg)   (500/1-001 - Main Auditorium)
15:00 Exploring SMEFT in VH channel with Machine Learning - Charanjit Kaur Khosa   (500/1-001 - Main Auditorium)
15:30 The Tracking Machine Learning challenge - David Rousseau (LAL-Orsay, FR)   (500/1-001 - Main Auditorium)
16:00 --- Coffee break ---
16:30
CERN Colloquium (until 18:00) (500/1-001 - Main Auditorium)
16:30 Gauge Fields in Deep Learning   (500/1-001 - Main Auditorium)
12:30 --- Lunch ---
14:00
Submitted contributions - Rudiger Haake (Yale University (US)) Steven Randolph Schramm (Universite de Geneve (CH)) (until 18:40) (500/1-001 - Main Auditorium)
14:00 A hybrid deep learning approach to vertexing - Henry Fredrick Schreiner (University of Cincinnati (US))   (500/1-001 - Main Auditorium)
14:20 Feature ranking based on subtraction methods - Paul Glaysher (DESY)   (500/1-001 - Main Auditorium)
14:40 ML Techniques for heavy flavour identification in CMS - Emil Sorensen Bols (Vrije Universiteit Brussel (BE))   (500/1-001 - Main Auditorium)
15:10 ParticleNet: Jet Tagging via Particle Clouds - Huilin Qu (Univ. of California Santa Barbara (US))   (500/1-001 - Main Auditorium)
15:30 Learning representations of irregular particle-detector geometry with distance-weighted graph networks - Jan Kieseler (CERN)   (500/1-001 - Main Auditorium)
16:00 --- Coffee break ---
16:30 GroomRL: jet grooming through reinforcement learning - Frederic Alexandre Dreyer (Oxford)   (500/1-001 - Main Auditorium)
16:50 NeuralRinger: An Ensemble of Neural Networks Fed from Calorimeter Ring Sums for Triggering on Electrons - Werner Spolidoro Freund (Federal University of of Rio de Janeiro (BR))   (500/1-001 - Main Auditorium)
17:10 Fast Deep Learning on FPGAs for the Phase-II L0 Muon Barrel Trigger of the ATLAS Experiment - Luigi Sabetta (Sapienza Universita e INFN, Roma I (IT))   (500/1-001 - Main Auditorium)
17:30 Close-out - Steven Randolph Schramm (Universite de Geneve (CH))   (500/1-001 - Main Auditorium)
13:10 --- Lunch ---
15:00
Tutorials - Rudiger Haake (Yale University (US)) David Rousseau (LAL-Orsay, FR) (until 18:30) (500/1-001 - Main Auditorium)
15:00 Bayesian approach to network design - Andrey Ustyuzhanin (Yandex School of Data Analysis (RU))   (500/1-001 - Main Auditorium)
15:30 Bayesian dropout explanation and examples - Andrey Ustyuzhanin (Yandex School of Data Analysis (RU))   (500/1-001 - Main Auditorium)
16:15 --- Coffee break ---
16:45 Advanced Generative Adversarial Network Techniques - Jonas Glombitza (Rheinisch-Westfaelische Tech. Hoch. (DE))   (500/1-001 - Main Auditorium)
Your browser is out of date!

If you are using Internet Explorer, please use Firefox, Chrome or Edge instead.

Otherwise, please update your browser to the latest version to use Indico without problems.

×